

2012 Engineering Formula Sheet

1.0 Statistics	
	Mode
$\frac{Mean}{\Sigma \times \Sigma}$	Place data in ascending order. Mode = most frequently occurring value (1.4)
$\overline{\mu} = \frac{\sum x_i}{N} \qquad (1.1a) \qquad \overline{\mathbf{x}} = \frac{\sum x_i}{n} (1.1b)$	
μ = population mean	If two values occur with maximum frequency the data set is <i>bimodal.</i>
$\overline{\mathbf{x}}$ = sample mean $\Sigma \mathbf{x}_i$ = sum of all data values (x ₁ , x ₂ , x ₃ ,)	If three or more values occur with maximum
N = size of population	frequency the data set is <i>multi-modal</i> .
n = size of sample	Standard Deviation
Median	$\sqrt{\sum(x_i - \mu)^2}$
	$\sigma = \sqrt{\frac{\Sigma(x_i - \mu)^2}{N}} $ (Population) (1.5a)
Place data in ascending order. If N is odd, median = central value (1.2)	$\overline{\Sigma(x-\overline{x})^2}$
If N is even, median = mean of two central values	$\mathbf{s} = \sqrt{\frac{\Sigma(\mathbf{x}_{i} - \bar{\mathbf{x}})^{2}}{n-1}} $ (Sample) (1.5b)
N = size of population	σ = population standard deviation
Range (1.5)	s= sample standard deviation x_i = individual data value ($x_1, x_2, x_3,$)
$Range = x_{max} - x_{min} $ (1.3)	μ = population mean
$x_{max} = maximum data value$	\overline{x} = sample mean N = size of population
x _{min} = minimum data value	n = size of population n = size of sample
2.0 Probability	Independent Events
	P (A and B and C) = $P_A P_B P_C$ (2.3)
Frequency	P (A and B and C) = probability of independent
$f_{X} = \frac{n_{X}}{n} $ (2.1)	events A and B and C occurring in sequence
<u>^ n ()</u>	P _A = probability of event A
f_x = relative frequency of outcome x n_x = number of events with outcome x	Mutually Exclusive Events
n = total number of events	$P (A \text{ or } B) = P_A + P_B $ (2.4)
Pinamial Probability	P (A or B) = probability of either mutually exclusive event A or B occurring in a trial
Binomial Probability (order doesn't matter)	P_A = probability of event A
$= n!(p^k)(q^{n-k})$	
$P_{k} = \frac{n!(p^{k})(q^{n-k})}{k!(n-k)!} $ (2.2)	Conditional Probability
	$P(A) \cdot P(D A)$
P_k = binomial probability of k successes in n trials	$P(A D) = \frac{P(A)P(D A) + P(C A)}{P(A)P(D A) + P(C A)} $ (2.5)
p = probability of a success	$- P(A) \cdot P(D A) + P(\sim A) \cdot P(D \sim A)$
	P (A D) = probability of event A given event D
 p = probability of a success q = 1 - p = probability of failure 	

6.0 Conversions

Mass/Weight (6.1) 1 kg = 2.205 lb _m 1 slug = 32.2 lb _m 1 ton = 2000 lb _m	Area (6.4) 1 acre = 4047 m ² = 43,560 ft ² = 0.00156 mi ²	Force (6.7) 1 N = 0.225 lb _f 1 kip = 1,000 lb _f	Energy (6.10) 1 J = 0.239 cal = 9.48 x 10 ⁻⁴ Btu = 0.7376 ft·lb _f
1 lb = 16 oz	Volume (6.5)	<i>Pressure</i> (6.8) 1 atm = 1.01325 bar	1kW h = 3,600,000 J
1 m = 3.28 ft 1 km = 0.621 mi 1 in. = 2.54 cm	1L = 0.264 gal = 0.0353 ft ³ = 33.8 fl oz 1mL = 1 cm ³ = 1 cc	= 33.9 ft H ₂ O = 29.92 in. Hg = 760 mm Hg = 101,325 Pa	7.0 Defined Units 1 J = 1 N·m
1 mi = 5280 ft 1 yd = 3 ft	Temperature <u>Unit</u>	= 14.7 psi 1psi = 2.31 ft of H_2O	$1 \text{ N} = 1 \text{ kg·m} / \text{s}^2$ $1 \text{ Pa} = 1 \text{ N} / \text{m}^2$ 1 V = 1 W / A
Time (6.3) 1 d = 24 h 1 h = 60 min 1 min = 60 s 1 yr = 365 d	Equivalents (6.6) 1 K = 1 °C = 1.8 °F = 1.8 °R See below for temperature calculation	Power (6.9) 1 W = 3.412 Btu/h = 0.00134 hp = 14.34 cal/min = 0.7376 ft·lb _f /s	$1 V = 1 V/A$ $1 W = 1 J/s$ $1 \Omega = 1 V/A$ $1 Hz = 1 s^{-1}$ $1 F = 1 A \cdot s / V$ $1 H = 1 V \cdot s / V$

8.0 SI Prefixes

Numbers Less Than One		
Power of 10	Prefix	Abbreviation
10 ⁻¹	deci-	d
10 ⁻²	centi-	С
10 ⁻³	milli-	m
10 ⁻⁶	micro-	μ
10 ⁻⁹	nano-	n
10 ⁻¹²	pico-	р
10 ⁻¹⁵	femto-	f
10 ⁻¹⁸	atto-	а
10 ⁻²¹	zepto-	Z
10 ⁻²⁴	yocto-	У

Power of 10PrefixAbbreviation 10^1 deca-da 10^2 hecto-h 10^3 kilo-k 10^6 Mega-M 10^9 Giga-G 10^{12} Tera-T 10^{15} Peta-P 10^{18} Exa-E	Numbers Greater Than One		
	Power of 10	Prefix	Abbreviation
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10 ¹	deca-	da
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 ²	hecto-	h
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 ³	kilo-	k
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 ⁶	Mega-	М
10 ¹⁵ Peta- P 10 ¹⁸ Exa- E	-	Giga-	G
10 ¹⁸ Exa- E		Tera-	Т
	-	Peta-	Р
		Exa-	E
	10 ²¹	Zetta-	Z
10 ²⁴ Yotta- Y	10 ²⁴	Yotta-	Y

9.0 Equations

Mass and Weight		
M = VD _m (9.1)		
W = mg (9.2)		
$W = VD_w $ (9.3)		
V = volume D _m = mass density m = mass D _w = weight density		

g = acceleration due to gravity

Temperature		
$T_{K} = T_{C} + 273$	(9.4)	
$T_{R} = T_{F} + 460$	(9.5)	
$T_F = \frac{9}{5}T_c + 32$ (9.6)		
T_{K} = temperature in Kelvin T_{C} = temperature in Celsius T_{R} = temperature in Rankin		

 T_F = temperature in Fahrenheit

Force	
F = ma	(9.7)
F = force m = mass a = acceleration	
Equations of Static Equilibrium	

		•	
$\Sigma F_x = 0$	$\Sigma F_y = 0$	$\Sigma M_{P} = 0$	(9.8)
F_x = force in the x-direction F_y = force in the y-direction M_P = moment about point P			

9.0 Equations (Continued)

 $W = F_{\parallel} \cdot \mathbf{d}$ (9.9) W = work

 F_{\parallel} = force parallel to direction of displacement d = displacement

Power

$P = \frac{E}{t} = \frac{W}{t}$	(9.10)
Ρ=τω	(9.11)
P = power E = energy W = work t = time τ = torque ω = angular velocity	

Efficiency

Efficiency (%) =
$$\frac{P_{out}}{P_{in}} \cdot 100\%$$
 (9.12)
 P_{out} = useful power output
 P_{in} = total power input

Energy: PotentialU = mgh(9.13)U = potential energy
m =mass
g = acceleration due to gravity
h = height

Energy: Kinetic	
$K = \frac{1}{2} mv^2$	(9.14)
K = kinetic energy m = mass v = velocity	
Energy: Thermal	

(9.15)

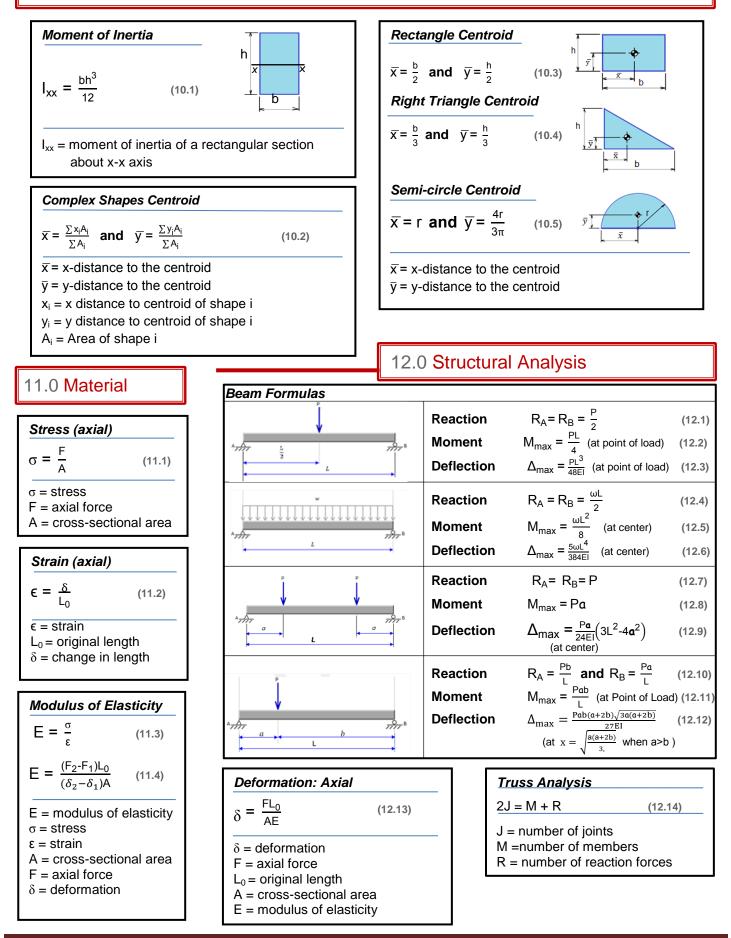
$\Omega = mc \Lambda T$

Q	=mc∆ I	

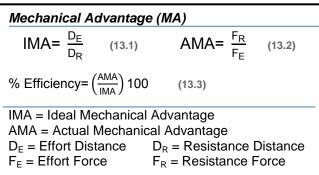
- Q = thermal energy
- m = mass
- c = specific heat
- ΔT = change in temperature

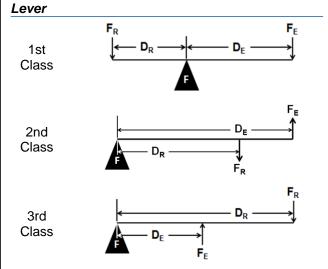
Fluid Mechanic	s		
$p = \frac{F}{A}$	(9.16)		
$\frac{V_1}{T_1} = \frac{V_2}{T_2} \text{(Charles')}$	Law) (9.17)		
$\frac{p_1}{T_1} = \frac{p_2}{T_2} (Gay-Lusz$	sanc's Law) (9.18)		
$p_1V_1 = p_2V_2$ (Boy	yle's Law) (9.19)		
Q = Av	(9.20)		
$A_1v_1 = A_2v_2$	(9.21)		
P = Qp (9.22)			
absolute pressure = gauge pressure + atmospheric pressure (9.23)			
p = absolute pressonF = ForceA = AreaV = volumeT = absolute termQ = flow ratev = flow velocity			

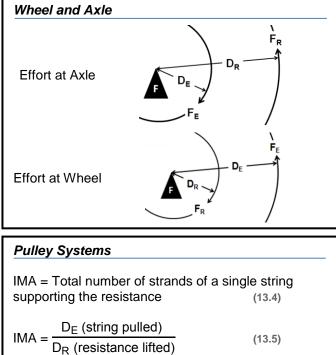
Mechanics	
$\bar{s} = \frac{d}{t}$	(9.24)
$\overline{\mathbf{v}} = \frac{\Delta \mathbf{d}}{\Delta t}$	(9.25)
$a = \frac{v_f - v_i}{t}$	(9.26)
$X = \frac{v_i^2 \sin(2\theta)}{-g}$	(9.27)
$v = v_0 + at$	(9.28)
$d = d_0 + v_0 t + \frac{1}{2} a t^2$	(9.29)
$v^2 = v_0^2 + 2a(d - d_0)$	(9.30)
$\tau = dFsin\theta$	(9.31)
\overline{s} = average speed \overline{v} = average velocity v = velocity a = acceleration X = range t = time Δd = change in displat d = distance g = acceleration due to θ = angle τ = torque	

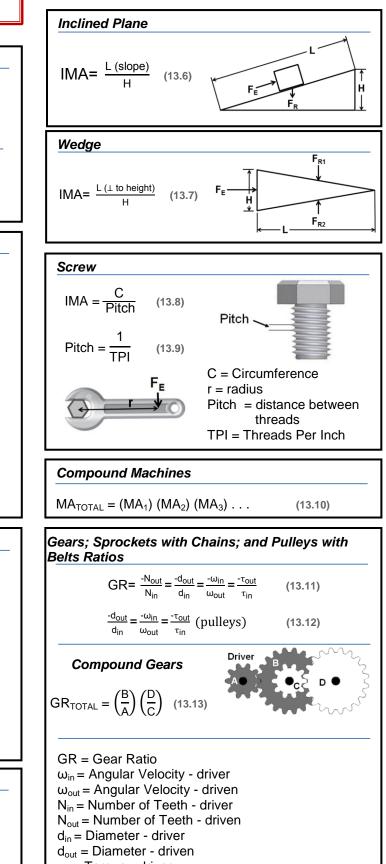

Electricity

<i>Ohm's Law</i> V = IR	(9.32)
P = IV	(9.33)
R_T (series) = $R_1 + R_2 + \cdot$	··· + R _n ^(9.34)
R_{T} (parallel) = $\frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots + F_{F}}$	<u>1</u> (9.35) R _n
Kirchhoff's Current Law $I_T = I_1 + I_2 + \dots + I_n$ or $I_T = \sum_{k=1}^n I_k$	(9.36)
Kirchhoff's Voltage Law $V_T = V_1 + V_2 + \dots + V_r$ or $V_T = \sum_{k=1}^n V_k$	
$V = voltage$ $V_{T} = total voltage$ $I = current$ $I_{T} = total current$ $R = resistance$ $R_{T} = total resistance$ $P = power$	


Thermodynamics	
P = Q' = ΑUΔT	(9.38)
$P = \frac{Q}{\Delta t}$	(9.39)
$U = \frac{1}{R} = \frac{k}{L}$	(9.40)
$P = \frac{kA\Delta T}{L}$	(9.41)
$A_1v_1 = A_2v_2$	(9.42)
$P_{net} = \sigma Ae(T_2^4 - T_1^4)$	(9.43)
P = rate of heat transfer Q = thermal energy A = Area of thermal cond U = coefficient of heat cond (U-factor) ΔT = change in temperat Δt = change in temperat Δt = change in time R = resistance to heat flock k = thermal conductivity V = velocity P _{net} = net power radiated σ = 5.6696 x 10 ⁻⁸ $\frac{W}{m^2 \cdot K^4}$ e = emissivity constant	onductivity ture ow (R-value)


L = thickness


10.0 Section Properties



13.0 Simple Machines

 τ_{in} = Torque - driver

 τ_{out} = Torque - driven

(13.5)

14.0 Structural Design

Steel Beam Design: Shear	Steel
$V_a \le \frac{V_n}{\Omega_v}$ (14.1)	M _a ≤
$V_n = 0.6F_y A_w$ (14.2)	$M_n = F$
V_a = internal shear force V_n = nominal shear strength Ω_v = 1.5 = factor of safety for shear F_v = yield stress	$M_a = iI$ $M_n = r$ $\Omega_b = 1$
$A_w = \text{area of web}$ $\frac{v_n}{a_v} = \text{allowable shear strength}$	F _y = yi Z _x = p
15.0 Storm Water Runoff	$\frac{M_n}{\Omega_b} = 3$
Storm Water Drainage $Q = C_f CiA$ (15.1) $C_c = \frac{C_1 A_1 + C_2 A_2 + \cdots}{A_1 + A_2 + \cdots}$ (15.2) Q = peak storm water runoff rate (ft ³ /s) C_f = runoff coefficient adjustment factor C = runoff coefficient i = rainfall intensity (in./h) A = drainage area (acres) $Runoff Coefficient Adjustment FactorAdjustment FactorReturn PeriodCf$	Ration Categ Fores Aspha Brick Concr Shing Law Up to 2% to Over Law Up to 2% to Over 2% to Over Drivey
1, 2, 5, 10 1.0 25 1.1 50 1.2 100 1.25 16.0 Water Supply	Farml Pastu Unimp Parks Ceme
Hazen-Williams Formula	Railro Playgi
$h_{f} = \frac{10.44LQ^{1.85}}{C^{1.85}d^{4.8655}}$ (16.1) $h_{f} = head loss due to friction (ft of H_{2}O)$ $L = length of pipe (ft)$ $Q = water flow rate (gpm)$ $C = Hazen-Williams constant$ $d = diameter of pipe (in.)$	Neigh City (c Resid Single Multi-p Multi-p Subur Apartr
Dynamic Head	

Dynamic Head

dynamic head = static head – head loss (16.2)

Steel Beam Design	: Moment	
$M_a \le \frac{M_n}{\Omega_b}$	(14.3)	
$M_n = F_y Z_x$	(14.4)	
$\begin{array}{l} M_{a} = \text{internal bending} \\ M_{n} = \text{nominal moment} \\ \Omega_{b} = 1.67 = \text{factor of bending moment} \\ F_{y} = \text{yield stress} \\ Z_{x} = \text{plastic section non-neutral axis} \\ \frac{M_{n}}{a_{b}} = \text{allowable bence} \end{array}$	nt strength safety for ment nodulus about	
Rational Method Ru	noff Coefficients	
Categorized by Surfa	ace	
Forested	0.059—0.2	
Asphalt	0.7—0.95	
Brick	0.7—0.85	
Concrete	0.8-0.95	
Shingle roof	0.75—0.95	
Lawns, well draine		
Up to 2% slope	0.05-0.1	
2% to 7% slope	0.10-0.15	
Over 7% slope	0.15-0.2	
Lawns, poor drainage (clay soil)		
Up to 2% slope	0.13—0.17	
2% to 7% slope 0.18—0.22		
Over 7% slope 0.10-0.22 0.25-0.35		
Driveways, 0.75–0.85		
Categorized by Use		
Farmland	0.05-0.3	
Pasture	0.05-0.3	
	0.05-0.3	
Unimproved	0.1-0.25	
Parks		
Cemeteries	0.1-0.25	
Railroad yard	0.2-0.40	
Playgrounds	0.2—0.35	
Business D		
Neighborhood	0.5-0.7	
City (downtown)	0.7—0.95	
Residential		
Single-family	0.3—0.5	
Multi-plexes,	0.4—0.6	
Multi-plexes,	0.6—0.75	
Suburban	0.25—0.4	
Apartments,	0.5—0.7	
Industi	rial	
Light	0.5—0.8	
Heavy	0.6—0.9	

Spread Footing Design

$q_{net} = q_{allowable} - p_{footing}$	(14.5)
$p_{footing} = t_{footing} \cdot 150 \frac{lb}{ft^2}$	(14.6)
$q = \frac{P}{A}$	(14.7)

 $\begin{array}{l} q_{net} = net \ allowable \ soil \\ & bearing \ pressure \\ q_{allowable} = total \ allowable \ soil \\ & bearing \ pressure \\ p_{footing} = soil \ bearing \ pressure \\ & due \ to \ footing \ weight \\ t_{footing} = thickness \ of \ footing \\ q = soil \ bearing \ pressure \\ P = column \ load \ applied \\ A = area \ of \ footing \end{array}$

17.0 Heat Loss/Gain

Heat Loss/Gain	
Q′ = AU∆T	(17.1)
$U = \frac{1}{R}$	(17.2)
Q = thermal energy A = Area of thermal conductivity U = coefficient of hea conductivity factor) ΔT = change in temp R = resistance to hea (R-value)	(U- erature

	Typical Design Value	100	130	140	130	100	
	Clean, New Pipe	130	140	150	140	140	
18.0 Hazen-Williams Constants	Typical Range	80 - 150	120 - 150		120 - 150	80-150	
18.0 Hazen-Wil	Pipe Material	Cast Iron and Wrought Iron	Copper, Glass or Brass	Cement lined Steel or Iron	Plastic PVC or ABS	Steel, welded and seamless or interior riveted	

19.0 Equivalent Length of (Generic) Fittings

Corol	und Eittinge	Pipe Size										
ociewed	wed Fittings	1/4	3/8	1/2	3/4	1	11/4	11/2	2	2 1/2	8	4
	Regular 90 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
Elbows	Long radius 90 degree	1.5	2.0	2.2	23	2.7	3.2	3.4	3.6	3.6	4.0	4.6
	Regular 45 degree	0.3	0.5	0.7	6.0	13	1.7	2.1	2.7	3.2	4.0	5.5
	Line Flow	0.8	1.2	1.7	2.4	3.2	4.6	5.6	1.7	9.3	12.0	17.0
5	Branch Flow	2.4	3.5	4.2	53	6.6	8.7	6.6	12.0	13.0	17.0	21.0
Return Bends	Regular 180 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	110	13.0
	Globe	21.0	22.0	22.0	24.0	29.0	37.0	42.0	54.0	62.0	0.97	110.0
Ve have	Gate	0.3	0.5	0.6	0.7	0.8	11	1.2	1.5	1.7	1.9	2.5
	Angle	12.8	15.0	15.0	15.0	17.0	18.0	18.0	18.0	18.0	18.0	18.0
	Swing Check	7.2	7.3	8.0	8.8	110	13.0	15.0	19.0	22.0	27.0	38.0
Geninee			46	05	99	22	18.0	0.00	27.0	20.0	0.72	0.07

	and Cittingn	Pipe Size																
Прі	riangeu riumgs	1/2	3/4	1	11/4	11/2	2	2 1/2	3	4	5	9	8	10	12	14	16	18
	Regular 90 degree	6'0	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Elbows	Long radius 90 degree	11	13	1.6	2.0	23	2.7	2.7	3.4	4.2	5.0	5.7	7.0	8.0	0.6	9.4	10.0	110
	Regular 45 degree	0.5	0.6	0.8	1.1	13	1.7	2.0	2.6	3.5	4.5	5.6	7.7	9.0	110	13.0	15.0	16.0
1	Line Flow	2:0	0.8	1.0	13	1.5	1.8	1.9	2.2	2.8	3.3	3.8	4.7	5.2	6.0	6.4	7.2	7.6
0	Branch Flow	2.0	2.6	3.3	4.4	5.2	6.6	7.5	9.4	12.0	15.0	18.0	24.0	30.0	34.0	37.0	43.0	47.0
Return Bends	Return Bends Regular 180 degree	6'0	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
	Long radius 180 degree	11	13	1.6	2.0	23	2.7	2.9	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	110
	Globe	38.0	40.0	45.0	54.0	59.0	70.0	0.77	94.0	120.0	150.0	190.0	260.0	310.0	390.0			
Valves	Gate						2.6	2.7	2.8	2.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
	Angle	15.0	15.0	17.0	18.0	18.0	21.0	22.0	28.0	38.0	50.0	63.0	90.0	120.0	140.0	160.0	190.0	210.0
	Swing Check	3.8	5.3	7.2	10.0	12.0	17.0	21.0	27.0	38.0	50.0	63.0	90.0	120.0	140.0			

20.0 555 Timer Design

$T = 0.693 (R_A + 2R_B)C$	(20.1)
$f = \frac{1}{T}$	(20.2)
duty-cycle = $\frac{(R_A + R_B)}{(R_A + 2R_B)}$ 100%	(20.3)
T = period f = frequency $R_A = resistance A$ $R_B = resistance B$ C = capacitance	

21.0 Boolean Algebra

Boolean Theorems	
X• 0 = 0	(21.1)
X•1 = X	(21.2)
X∙X=X	(21.3)
X • X =0	(21.4)
X + 0 = X	(21.5)
X + 1 = 1	(21.6)
X + X = X	(21.7)
$X + \overline{X} = 1$	(21.8)
$\overline{\overline{X}} = X$	(21.9)

Commutative Law	
$X \bullet Y = Y \bullet X$	(21.10)
X+Y = Y+X	(21.11)
Associative Law	
X(YZ) = (XY)Z	(21.12)
X + (Y + Z) = (X + Y) + Z	(21.13)

Distributive Law

X(Y+Z) = XY + XZ

 $(X+Y)(W+Z) = XW+XZ+YW+YZ \quad (21.15)$

(21.14)

Consensus	Theorems

(21.16)
(21.17)
(21.18)
(21.19)

DeMorgan's Theorems	
$\overline{XY} = \overline{X} + \overline{Y}$	(21.20)
$\overline{X+Y} = \overline{X} \bullet \overline{Y}$	(21.21)

22.0 Speeds and Feeds

$N = \frac{CS(12\frac{in.}{ft})}{\pi d}$	(22.1)
$f_m = f_t \cdot n_t \cdot N$	(22.2)
Plunge Rate = $\frac{1}{2} \cdot f_m$ N = spindle speed (r CS = cutting speed (d = diameter (in.) f_m = feed rate (in./mir f_t = feed (in./tooth/rev n_t = number of teeth	in./min) າ)

23.0 Aerospace

Former of Flight	
Forces of Flight	
$C_D = \frac{2D}{A\rho v^2}$	(23.1)
$R_e = \frac{\rho v l}{\mu}$	(23.2)
$C_L = \frac{2L}{A\rho v^2}$	(23.3)
M = Fd	(23.4)
$\begin{array}{l} C_L = \text{coefficient of lift} \\ C_D = \text{coefficient of drag} \\ L = \text{lift} \\ D = \text{drag} \\ A = \text{wing area} \\ \rho = \text{density} \\ R_e = \text{Reynolds number} \\ v = \text{velocity} \\ I = \text{length of fluid travel} \\ \mu = \text{fluid viscosity} \\ F = \text{force} \\ m = \text{mass} \\ g = \text{acceleration due to gravity} \\ M = \text{moment} \\ d = \text{moment arm (distance from} \\ \text{datum perpendicular to F)} \end{array}$	

$F_{N} = W(v_{j} - v_{o}) $ (23.5) $I = F_{ave}\Delta t $ (23.6) $F_{net} = F_{avg} - F_{g} $ (23.7) $a = \frac{v_{f}}{\Delta t} $ (23.8) $F_{N} = net thrust $ (23.8) $F_{N} $	Propulsion	
$F_{net} = F_{avg} - F_g \qquad (23.7)$ $a = \frac{v_f}{\Delta t} \qquad (23.8)$ $F_N = net thrust$ $W = air mass flow$ $v_o = flight velocity$ $v_j = jet velocity$ $I = total impulse$ $F_{ave} = average thrust force$ $\Delta t = change in time (thrust duration)$ $F_{net} = net force$ $F_g = force of gravity$ $v_f = final velocity$ $a = acceleration$ $\Delta t = change in time (thrust duration)$ $NOTE: F_{ave} and F_{avg} are$	$F_N = W(v_j - v_o)$	(23.5)
$a = \frac{v_f}{\Delta t}$ (23.8) $F_N = \text{net thrust}$ $W = \text{air mass flow}$ $v_o = \text{flight velocity}$ $v_j = \text{jet velocity}$ $I = \text{total impulse}$ $F_{ave} = \text{average thrust force}$ $\Delta t = \text{change in time (thrust}$ $duration)$ $F_{net} = \text{net force}$ $F_{avg} = \text{average force}$ $F_g = \text{force of gravity}$ $v_f = \text{final velocity}$ $a = \text{acceleration}$ $\Delta t = \text{change in time (thrust}$ $duration)$ NOTE: Fave and Favg are	$I = F_{ave} \Delta t$	(23.6)
$F_{N} = net thrust$ $W = air mass flow$ $v_{o} = flight velocity$ $v_{j} = jet velocity$ $I = total impulse$ $F_{ave} = average thrust force$ $\Delta t = change in time (thrust duration)$ $F_{net} = net force$ $F_{g} = force of gravity$ $v_{f} = final velocity$ $a = acceleration$ $\Delta t = change in time (thrust duration)$ $NOTE: F_{ave} and F_{avg} are$	$F_{net} = F_{avg} - F_g$	(23.7)
$W = \text{air mass flow}$ $v_o = \text{flight velocity}$ $v_j = \text{jet velocity}$ $I = \text{total impulse}$ $F_{ave} = \text{average thrust force}$ $\Delta t = \text{change in time (thrust duration)}$ $F_{net} = \text{net force}$ $F_{avg} = \text{average force}$ $F_g = \text{force of gravity}$ $v_f = \text{final velocity}$ $a = \text{acceleration}$ $\Delta t = \text{change in time (thrust duration)}$ $NOTE: F_{ave} \text{ and } F_{avg} \text{ are}$	$a = \frac{v_f}{\Delta t}$	(23.8)
	$W = air mass flow v_o = flight velocity v_j = jet velocity I = total impulse Fave = average thrus \Delta t = change in timeduration)Fnet = net forceFavg = average forceFg = force of gravityvf = final velocitya = acceleration\Delta t = change in timeduration)NOTE: Fave and$	(thrust (thrust

Energy	
$K = \frac{1}{2} mv^2$	(23.9)
$U = \frac{-GMm}{R}$	(23.10)
$E = U + K = -\frac{GMm}{2R}$	(23.11)
$G = 6.67 \times 10^{-11} \frac{m^3}{kg \times s^2}$	(23.12)
K = kinetic energy m =mass v = velocity U = gravitational potential energy G = universal gravitation constant M =mass of central body m = mass of orbiting object R = Distance center main body to center of orbiting object	

E = Total Energy of	f an orbit
---------------------	------------

Orbital Mechanics	
$e = \sqrt{1 - \frac{b^2}{a^2}}$	(23.13)
$T = 2\pi \frac{a^{3}}{\sqrt{\mu}} = 2\pi \frac{a^{3}}{\sqrt{GM}}$	(23.14)
$F = \frac{GMm}{r^2}$	(23.15)
e = eccentricity b = semi-minor axis a = semi-major axis T = orbital period a = semi-major axis $\mu = \text{gravitational parameter}$ F = force of gravity between two bodies G = universal gravitation constant M = mass of central body m = mass of orbiting object r = distance between center of two objects	

Bernoulli's Law

$$\left(P_{s} + \frac{\rho v^{2}}{2}\right)_{1} = \left(P_{s} + \frac{\rho v^{2}}{2}\right)_{2}$$
 (23.16)
 $P_{s} = \text{static pressure}$
 $v = \text{velocity}$
 $\rho = \text{density}$

Atmosphere Parameters	
T = 15.04 - 0.00649h	(23.17)
$p = 101.29 \left[\frac{(T + 273.1)}{288.08} \right]^{5.256}$	(23.18)
$\rho = \frac{p}{0.2869(T + 273.1)}$	(23.19)
T = temperature h = height ρ = pressure ρ = density	