

00 I can measure the area of a shape or flat surface by covering it with unit squares, with no gaps or overlaps and counting the number of unit squares used.

I can multiply adjacent side lengths of rectangles to solve word problems. V I can decompose an irregular figure into non-overlapping rectangles.

I can measure area by counting unit squares within a figure. (square cm., square m., square in., square feet, or square units)

I can solve word problems involving equal groups, arrays, and measurement quantities using drawings and equations.

I can apply the commutative, associative and distributive properties to decompose, regroup, and/or reorder factors to make it easier to multiply two or more factors.

I understand and can show how to use multiplication in problem solving. (5 groups of 7 people is equal to 5x7)

I can use multiplication and division to solve word problems involving equal groups, arrays and measurements.

I can use relations between numbers to determine the missing number in multiplication and division equations.

I understand the relationship between division and multiplication and use my multiplication facts to help me solve division problems.

I can choose the correct operation to perform the first computation, and choose the correct operation to perform the second computation in order to solve two-step word problems.

I can identify and describe arithmetic patterns in number charts, addition tables, and multiplication tables.

I can explain any fraction (a/b) as "a" (numerator) being the numbers of parts and "b" (denominator) as the total number of equal parts in the whole.

F I can explain and show how a fraction can be represented on a number line in two ways: (1) as a number that is located a to the right of o, and (2) as the size of each of the parts when a whole is partitioned into equal parts.

I can explain how the size of equal parts can be used to compare two fractions with the same numerator.

I can explain how the size of equal parts can be used to compare two fractions with the same denominator.

I can estimate liquid, Volumes and masses of objects using standard units of measure (grams, kilograms, and liters).

00 'I can measure liquid Volumes and masses of objects using standard units of measure (grams, kilograms, and liters)

I can use drawings to represent one-step word problems involving masses or volumes.

I can make a scaled picture graph or bar graph with several categories to represent data (e.g. one square or picture represents 5 objects).

I can read and interpret scaled bar graphs in order to solve one- and two- step "how many more" and "how many less" problems.

i can show how rectangles with the same perimeter can have different areas and show rectangles with the same areas can have different perimeters.

